Genome-wide association study of plant color in Sorghum bicolor.

Wang L, Tu W, Jin P, Liu Y, Du J, Zheng J, Wang YH, Li J

Published: 20 March 2024 in Frontiers in plant science
Keywords: GWAS, SNP, plant color, resequencing, sorghum
Pubmed ID: 38660439
DOI: 10.3389/fpls.2024.1320844

INTRODUCTION: Sorghum plant color is the leaf sheath/leaf color and is associated with seed color, tannin and phenol content, head blight disease incidence, and phytoalexin production.RESULTS: In this study, we evaluated plant color of the sorghum mini core collection by scoring leaf sheath/leaf color at maturity as tan, red, or purple across three testing environments and performed genome-wide association mapping (GWAS) with 6,094,317 SNPs markers.RESULTS AND DISCUSSION: Eight loci, one each on chromosomes 1, 2, 4, and 6 and two on chromosomes 5 and 9, were mapped. All loci contained one to three candidate genes. In qPC5-1, Sobic.005G165632 and Sobic.005G165700 were located in the same linkage disequilibrium (LD) block. In qPC6, Sobic.006G149650 and Sobic.006G149700 were located in the different LD block. The single peak in qPC6 covered one gene, Sobic.006G149700, which was a senescence regulator. We found a loose correlation between the degree of linkage and tissue/organ expression of the underlying genes possibly related to the plant color phenotype. Allele analysis indicated that none of the linked SNPs can differentiate between red and purple accessions whereas all linked SNPs can differentiate tan from red/purple accessions. The candidate genes and SNP markers may facilitate the elucidation of plant color development as well as molecular plant breeding.

Anhui Provincial Education Department - Distinguished talents gxbjZD2022045
National Natural Science Foundation of China 32372134
Natural Science Research of Anhui Provincial Education Department - Key Project KJ2021ZD0108
the Anhui Provincial Natural Science Fund 2008085MC73