Somatic embryogenesis from mature sorghum seeds: An underutilized genome editing recipient system.

Wu H, Zhang K, Li J, Wang J, Wang Y, Yu J, Cong L, Duan Y, Ke F, Zhang F, Liu Z, Lu F, Zhang Z, Zou J, Zhu K

Published: 8 January 2024 in Heliyon
Keywords: Genome editing, Recipient, Regeneration, Seeds, Somatic embryogenesis, Sorghum
Pubmed ID: 38187328
DOI: 10.1016/j.heliyon.2023.e23638

Somatic embryogenesis is a process of cell totipotency in vitro, whereby an embryogenic cell develops from vegetative tissues rather than from zygotes after double fertilization. Sorghum is a recalcitrant crop in genetic transformation; previous recipient systems have usually been from immature zygotic embryos, which needed more time and labors to prepare. Here, an efficient 2,4-dichlorophenoxyacetic acid (2,4-D)-induced somatic embryogenesis system from mature sorghum seeds was introduced. 2,4-D can induce two types of calli from a plumular axis section. Low-concentration 2,4-D (e.g., 2 mg/L) induces white and loose non-embryogenic calli (type 1), while high-concentration 2,4-D (e.g., 8 mg/L) induces yellow and compact embryogenic calli (type 2), which can be clearly distinguished by Sudan red staining. Germinating seeds have a long 2-day window for SE induction. Somatic embryogenesis can be enhanced by HDAC inhibitor, trichostatin A (TSA), a histone deacetylase treatment, which shows more SE productivity and a bigger size. Importantly, this easily prepared protocol does not show obvious genotype dependency in sorghum hybrids. In this study, a high-concentration 2,4-D-induced SE system was established from mature sorghum seeds. This finding provides a technical option for the genome editing recipient in sorghum.