Haplotypes at the sorghum ARG4 and ARG5 NLR loci confer resistance to anthracnose.

Habte N, Girma G, Xu X, Liao CJ, Adeyanju A, Hailemariam S, Lee S, Okoye P, Ejeta G, Mengiste T

Published: 19 December 2023 in The Plant journal : for cell and molecular biology
Keywords: Colletotrichum sublineola, NLR cluster, NLRs, R-gene, Sorghum bicolor, anthracnose
Pubmed ID: 38111157
DOI: 10.1111/tpj.16594

Sorghum anthracnose caused by the fungus Colletotrichum sublineola (Cs) is a damaging disease of the crop. Here, we describe the identification of ANTHRACNOSE RESISTANCE GENES (ARG4 and ARG5) encoding canonical nucleotide-binding leucine-rich repeat (NLR) receptors. ARG4 and ARG5 are dominant resistance genes identified in the sorghum lines SAP135 and P9830, respectively, that show broad-spectrum resistance to Cs. Independent genetic studies using populations generated by crossing SAP135 and P9830 with TAM428, fine mapping using molecular markers, comparative genomics and gene expression studies determined that ARG4 and ARG5 are resistance genes against Cs strains. Interestingly, ARG4 and ARG5 are both located within clusters of duplicate NLR genes at linked loci separated by ~1 Mb genomic region. SAP135 and P9830 each carry only one of the ARG genes while having the recessive allele at the second locus. Only two copies of the ARG5 candidate genes were present in the resistant P9830 line while five non-functional copies were identified in the susceptible line. The resistant parents and their recombinant inbred lines carrying either ARG4 or ARG5 are resistant to strains Csgl1 and Csgrg suggesting that these genes have overlapping specificities. The role of ARG4 and ARG5 in resistance was validated through sorghum lines carrying independent recessive alleles that show increased susceptibility. ARG4 and ARG5 are located within complex loci displaying interesting haplotype structures and copy number variation that may have resulted from duplication. Overall, the identification of anthracnose resistance genes with unique haplotype stucture provides a foundation for genetic studies and resistance breeding.

National Science Foundation IOS-1916893
United States Agency for International Development (USAID) - Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet AID-OAA-A-13-00047