Wu F, Zhao M, Zhang Y, Si W, Cheng B, Li X
BACKGROUND: Plant respiratory burst oxidase homolog (Rboh) gene family produces reactive oxygen species (ROS), and it plays key roles in plant-microbe interaction. Most Rboh gene family-related studies mainly focused on dicotyledonous plants; however, little is known about the roles of Rboh genes in gramineae.RESULTS: A total of 106 Rboh genes were identified in seven gramineae species, including Zea mays, Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica, Hordeum vulgare, and TriticumĀ aestivum. The Rboh protein sequences showed high similarities, suggesting that they may have conserved functions across different species. Duplication mode analysis detected whole-genome/segmental duplication (WGD)/(SD) and dispersed in the seven species. Interestingly, two local duplication (LD, including tandem and proximal duplication) modes were found in Z. mays, S. italica and H. vulgare, while four LD were detected in T. aestivum, indicating that these genes may have similar functions. Collinearity analysis indicated that Rboh genes are at a stable evolution state in all the seven species. Besides, Rboh genes from Z. mays were closely related to those from S. bicolor, consistent with the current understanding of plant evolutionary history. Phylogenetic analysis showed that the genes in the subgroups I and II may participate in plant-AM fungus symbiosis. Cis-element analysis showed that different numbers of elements are related to fungal induction in the promoter region. Expression profiles of Rboh genes in Z. mays suggested that Rboh genes had distinct spatial expression patterns. By inoculation with AM fungi, our transcriptome analysis showed that the expression of Rboh genes varies upon AM fungal inoculation. In particularly, ZmRbohF was significantly upregulated after inoculation with AM fungi. pZmRbohF::GUS expression analyses indicated that ZmRbohF was induced by arbuscular mycorrhizal fungi in maize. By comparing WT and ZmRbohF mutant, we found ZmRbohF had limited impact on the establishment of maize-AM fungi symbiosis, but play critical roles in regulating the proper development of arbuscules.CONCLUSIONS: This study provides a comprehensive analysis of the evolution relationship of Rboh genes in seven gramineae species. Results showed that several Rboh genes regulate maize-AM fungal symbiosis process. This study provides valuable information for further studies of Rboh genes in gramineae.