Wu C, Guo D
In flowering plants, C4 photosynthesis is superior to C3 type in carbon fixation efficiency and adaptation to extreme environmental conditions, but the mechanisms behind the assembly of C4 machinery remain elusive. This study attempts to dissect the evolutionary divergence from C3 to C4 photosynthesis in five photosynthetic model plants from the grass family, using a combined comparative transcriptomics and deep learning technology. By examining and comparing gene expression levels in bundle sheath and mesophyll cells of five model plants, we identified 16 differentially expressed signature genes showing cell-specific expression patterns in C3 and C4 plants. Among them, two showed distinctively opposite cell-specific expression patterns in C3 vs. C4 plants (named as FOGs). The in silico physicochemical analysis of the two FOGs illustrated that C3 homologous proteins of LHCA6 had low and stable pI values of ~6, while the pI values of LHCA6 homologs increased drastically in C4 plants Setaria viridis (7), Zea mays (8), and Sorghum bicolor (over 9), suggesting this protein may have different functions in C3 and C4 plants. Interestingly, based on pairwise protein sequence/structure similarities between each homologous FOG protein, one FOG PGRL1A showed local inconsistency between sequence similarity and structure similarity. To find more examples of the evolutionary characteristics of FOG proteins, we investigated the protein sequence/structure similarities of other FOGs (transcription factors) and found that FOG proteins have diversified incompatibility between sequence and structure similarities during grass family evolution. This raised an interesting question as to whether the sequence similarity is related to structure similarity during C4 photosynthesis evolution.