Kang X, Gao W, Cui B, Abd El-Aty AM
This review focuses on the structure and genetic regulation of starch formation in sorghum (Sorghum bicolor (L.) Moench) endosperm. Sorghum is an important cereal crop that is well suited to grow in regions with high temperatures and limited water resources due to its C4 metabolism. The endosperm of sorghum kernels is a rich source of starch, which is composed of two main components: amylose and amylopectin. The synthesis of starch in sorghum endosperm involves multiple enzymatic reactions, which are regulated by complex genetic and environmental factors. Recent research has identified several genes involved in the regulation of starch synthesis in sorghum endosperm. In addition, the structure and properties of sorghum starch can also be influenced by environmental factors such as temperature, water availability, and soil nutrients. A better understanding of the structure and genetic regulation of starch formation in sorghum endosperm can have important implications for the development of sorghum-based products with improved quality and nutritional value. This review provides a comprehensive summary of the current knowledge on the structure and genetic regulation of starch formation in sorghum endosperm and highlights the potential for future research to further improve our understanding of this important process.