Systematic Identification and Expression Analysis of the Sorghum Pht1 Gene Family Reveals Several New Members Encoding High-Affinity Phosphate Transporters.

Zhang J, Shen Y, Chen W, Bai B, Ji X, Chi Y

Published: 27 November 2022 in International journal of molecular sciences
Keywords: Pht1, high-affinity phosphate transporter, low-P condition, sorghum
Pubmed ID: 36430345
DOI: 10.3390/ijms232213855

Sorghum (Sorghum bicolor) is known to have a more robust capability of phosphorus uptake than many other cereal plants, which could be attributed to its phosphate transporter 1 (Pht1) that has a high phosphorus affinity. There are eleven SbPht1 genes in the sorghum genome, nine of which are expressed in sorghum roots or shoots in response to phosphorus deficiency (low-P). The molecular features of these nine genes were investigated by gene expression analysis, subcellular localization, and a yeast mutant complementation growth assay. They were found to be induced in response to low-P stress in root or shoot. All these SbPht1 proteins were found to be localized on the cell membrane, and SbPht1;8 was also detected in the endoplasmic reticulum. These SbPht1s were able to complement the yeast mutant EY917 that lacks all the functional phosphate transporters, and, among them, SbPht1;5, SbPht1;6 and SbPht1;8 could partially complement the yeast mutant strain EY917 in low-P conditions. Overall, these findings demonstrate that SbPht1;5, SbPht1;6, and SbPht1;8 are high-affinity phosphate transporters. SbPht1;5, in particular, is specifically involved in phosphorus uptake in the roots, whilst SbPht1;6 and SbPht1;8 are key players in both P uptake and P transport in response to low-P stress in sorghum.

Fundamental Research Funds for the Central Universities KYYJ2022005
National Natural Science Foundation of China 31601324