Genetic modification of PIN genes induces causal mechanisms of stay-green drought adaptation phenotype.

Borrell AK, Wong ACS, George-Jaeggli B, van Oosterom EJ, Mace ES, Godwin ID, Liu G, Mullet JE, Klein PE, Hammer GL, McLean G, Hunt C, Jordan DR

Published: 13 August 2022 in Journal of experimental botany
Keywords: PIN genes, Canopy development, cereals, drought adaptation, root architecture, stay-green
Pubmed ID: 35961690
DOI: 10.1093/jxb/erac336

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.

Australian Research Council - Cereal Blueprints for a Water-Limited World DP190102185
the Grains Research and Development Corporation DAQ00177