Mansour MMF, Emam MM, Salama KHA, Morsy AA
An overview is presented of recent advances in our knowledge of responses and mechanisms rendering adaptation to saline conditions in sorghum. Different strategies deployed to enhance salinity stress tolerance in sorghum are also pointed out. Salinity stress is a growing problem worldwide. Sorghum is the fifth key crop among cereals. Understanding responses and tolerance strategies in sorghum would be therefore helpful effort for providing biomarkers for designing greatest salinity-tolerant sorghum genotypes. When sorghum exposed to salinity, salinity-tolerant genotypes most probably reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. The review thus discusses the possible physiological and biochemical responses that confer salinity tolerance to sorghum under saline conditions. Although it is not characterized in sorghum, salinity perceiving and transmitting signals to downstream responses via signaling transduction pathways most likely are essential strategy for sorghum adaptation to salinity stress. Sorghum has also shown to withstand moderate saline environments and retain the germination, growth, and photosynthetic activities. Salinity-tolerant sorghum genotypes show the ability to exclude excessive Na+ from reaching shoots and induce ion homeostasis. Osmotic homeostasis and ROS detoxification are also evident as salinity tolerance strategies in sorghum. These above mechanisms lead to re-establishment of cellular ionic, osmotic, and redox homeostasis as well as photosynthesis efficiency. It is noteworthy that these mechanisms act individually or co-operatively to minimize the salinity hazards and enhance acclimation in sorghum. We conclude, however, that although these responses contribute to sorghum tolerance to salinity stress, they seem to be not adequate at higher concentrations of salinity, which agrees with sorghum ranking as moderately salinity-tolerant crop. Also, some of these tolerance strategies reported in other crops are not well studied and documented in sorghum, but most probably have roles in sorghum. Further improvement in sorghum salinity tolerance using different approaches is definitely necessary to meet the requirements of its harsh production environments, and therefore, these approaches are addressed.